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(Entwurf und Simulation transformierter Beugungsgitter):

Transformationsoptik ist eine Theorie, die auf der Forminvarianz der
Maxwell-Gleichungen unter Koordinatentransformationen basiert. Unter
Ausnutzung dieser Forminvarianz ist es möglich, Transformationen mit
Änderungen in Materialien sowie mit transformierten elektromagne–
tischen Feldern zu verknüpfen. Mit dieser Verknüpfung lassen sich Medien
entwerfen, welche die elektromagnetischen Felder gemäß der Entwurfs-
transformation transformieren. In dieser Arbeit wird diese Entwurfstech-
nik auf Beugungsgitter in einer Art und Weise angewendet, welche ihre
Beugungseigenschaften unangetastet lässt. Die so entworfenen Medien
werden mithilfe von Computersimulationen untersucht. Da diese Medien
anisotrop und inhomogen sind, werden hierfür Methoden benötigt die auf
solche Medien anwendbar sind. Der Gegenstand eines Teils dieser Ar-
beit sind solche Methoden. Sie werden im Hauptteil dazu verwendet, die
Maxwell-Gleichungen in diesen Medien mit üblichen Randbedingungen zu
lösen.

(Transformed diffraction gratings, design and simulations):

Transformation optics is a theory based on the formal invariance of
Maxwell’s equations under coordinate transformations. This formal in-
variance allows to relate transformations with changes in material param-
eters and with transformed electromagnetic fields. This relation can be
exploited to design media that transform the electromagnetic fields ac-
cording to the transformation used in the design. In this work, this design
technique is used to transform diffraction gratings in a way that keeps their
diffraction behaviour intact. The resulting transformation media are stud-
ied by means of computer simulations. Since these media are anisotropic
and inhomogeneous, methods applicable to such media are needed to study
them. One part of this work is devoted to such methods. These methods
solve Maxwell’s equations in the transformation media for usual boundary
conditions in the main part of this work.
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Chapter 1

Introduction

Transformation optics is a theory in the domain of classical electromagnetism.
The theory is based on the formal invariance of Maxwell’s equations under
coordinate transformations [1, 2, 3, 4]. In his publication “Electromagnetic
Waves in Gravitational fields” [1], published in 1960, Plebanski transformed
the microscopic Maxwell equations in empty space to a curved geometry.
Then he compares them with the macroscopic Maxwell equations in a space
filled with matter. In doing so, he found constitutive equations for the elec-
tromagnetic fields. These constitutive equations contain transformation rules
for the electric permittivity and the magnetic permeability that render the
two sets of Maxwell equations equivalent. This can be understood as follows:
The electromagnetic fields in the curved geometry behave exactly like fields
in a flat geometry that is filled with a material described by constitutive
equations. This is transformation optics in a nutshell.

A more thorough explanation is given in the section 2.1. An applica-
tion of this theory, the main part of this work, is done in section 4. The
transformation rules enable the design of media that transform the electro-
magnetic fields according to the transformation used in the design. This
design technique is used to transform diffraction gratings in a way that keeps
their diffraction behaviour intact. The transformed gratings as well as the
original ones are studied by means of computer simulations and the results
are compared to the theoretical predictions.

Since the transformed gratings are anisotropic and inhomogeneous, meth-
ods applicable to such media are needed to study them. Section 3 is devoted
to such methods.
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Chapter 2

Transformation optics

2.1 Plebanski’s approach

In this section, a special case of Plebanski’s constitutive equations is derived
starting with Maxwell’s equations and examples for constitutive equations.

The Maxwell equations are a set of partial differential equations that form
the basis of classical electromagnetism. In macroscopic Minkowski form they
read [5, section 2.1] [6, chapter 13]

rotE = −∂tB, (2.1a)

rotH = J + ∂tD, (2.1b)

divD = ρ, (2.1c)

divB = 0, (2.1d)

with electric field strength E, magnetic field strength B, electric excitationD,
magnetic excitation H, charge density ρ and current density J . The charge
and current densities satisfy the continuity equation [7, §29] : divJ+∂tρ = 0.
If only the charge density is given and without additional information, the
number of unknowns exceeds the number of equations in (2.1), hence addi-
tional information is needed to render the set of equations definite. This ad-
ditional information is an interdependence between the electromagnetic field
quantities E,B,D,H and J . The equations describing these interdependence
are known as constitutive equations. And these constitutive equations incor-
porate the electromagnetic effects of the materials in the considered domain.

Electromagnetic effects in materials are very diverse [8] [9, section I.4] [5,
section 2.2] and to my knowledge there is no consistent formulation of the
constitutive equations that applies to all effects. Therefore, some common
examples are given that apply to the physical problems treated in this work.
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In linear isotropic materials such as glass, the fields are related by two scalars
ε and µ [5, section 2.2.2]

D = εE = ε0εrE, (2.2a)

B = µH = µ0µrH, (2.2b)

often expressed relative to the vacuum permittivity ε0 and the vacuum per-
meability µ0 [10, section 4.4.1]. This vacuum permittivity ε0 is related to the
vacuum permeability µ0 and the speed of light c by [11, chapter 2]

c2 =
1

ε0µ0

. (2.3)

Assuming vacuum, εr = µr = 1, the constitutive equations (2.2) can be used
to substitute for D and H in equation (2.1) which yields

rotE = −∂tB, (2.4a)

rotB = µ0(J + ε0∂tE), (2.4b)

divE =
ρ

ε0

, (2.4c)

divB = 0, (2.4d)

the microscopic Maxwell equations. In linear anisotropic materials ε and µ
are no longer scalars but matrices

Di = εijEj, (2.5a)

Bi = µijHj. (2.5b)

Note that Einsteins summation convention is used here. A prominent exam-
ple for an anisotropic material is calcite. In this birefringent uniaxial crystal
the constitutive equations (2.5) hold with the material parameters

εr =

√1.486 0 0

0
√

1.685 0

0 0
√

1.685

 , µr =

1 0 0
0 1 0
0 0 1

 , (2.6)

for light with a wavelength around 0.590µm in a suitable coordinate sys-
tem whose axes coincide with the principal dielectric axes of the crystal [11,
chapter 13] .

The preceding examples for constitutive equations are based on materials
that exist in nature. The next example, Plebanski’s constitutive equations
[1], is not based on a existing material but on the form invariance of Maxwell’s
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equations. The derivation consists of two steps. The first step is to trans-
form the microscopic Maxwell equations in empty space from a right handed
Cartesian coordinate system to an arbitrary curvilinear coordinate system.
The second step is to compare the resulting equations with Maxwell’s equa-
tions in a macroscopic medium in a Cartesian coordinate system. Both sets
are formally equivalent if the electromagnetic properties of this medium are
described by Plebanski’s constitutive equations [1, 12]

Di = ε0ε
ij
r Ej + [ijk]wj

c
Hk, (2.7a)

Bi = µ0µ
ij
r Hj − [ijk]wj

c
Ek, (2.7b)

εijr = µijr = −
√
−g
g00

gij, wi =
gi0
g00

, (2.7c)

where [ijk] is the permutation symbol

[ijk] =


+1 if (i, j, k) is (1, 2, 3), (3, 1, 2), or (2, 3, 1)

−1 if (i, j, k) is (1, 3, 2), (2, 1, 3), or (3, 2, 1)

0 if i = j, or j = k, or k = i,

(2.8)

and gij is the metric tensor in the arbitrary coordinate system. The tensor
gij is the inverse of the metric tensor gij [7, §83]:

gikg
kj = δji , (2.9)

where δ is the Kronecker delta. The metric tensor gij in the arbitrary coor-
dinate system can be expressed as the transformation of the metric tensor η
[7, §83]

gij = Λi′

iΛ
j′

jηi′j′ , (2.10)

in another more familiar coordinate system. In Plebanski’s paper [1] this is
the metric of Minkowski space η = diag (−1, 1, 1, 1) and Λ in equation (2.10)
denotes the Jacobian matrix of the transformation

Λi′

i =
∂xi

′

∂xi
, (2.11)

from Minkowski space with coordinates x to the arbitrary coordinate system
with coordinates x′. The g without indices in the expression

√
−g is the de-

terminant of the inverse of the metric tensor. This scalar can be expressed as
the determinant of the Jacobi matrix and the determinant of the Minkowski
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metric η which is −1. Taking the determinant on both sides of equation
(2.10) gives

1/g = |Λ|2|η| = −|Λ|2 ⇒
√
−g =

1

|Λ|
, (2.12)

where the property of the determinant |M−1| = 1/|M | for a non-singular
matrix M has been used. The material described by Plebanski’s constitutive
equations (2.7c) solely depends on the transformation used. The magnetic
permeability of this material is equal to its electric permittivity and, if the
vector w is non-zero, the material couples the electric fields with the magnetic
fields. There is no guarantee that this material exists but if it is placed
in empty space the empty space solution to Maxwell’s equations become
transformed versions of these empty space solutions.

Plebanski’s derivation [1] is quite taciturn. A thorough derivation was
published by Kulyabov and others [13], another one by Leonhardt and Philbin
[12, appendix A] [2, appendix A] and yet another one by Ward and Pendry
[14] but restricted to purely spatial transformations.

Plebanski’s equations allow for transformations in space and time. Since
only purely spatial transformations are used in this work and for the sake of
simplicity a derivation for purely spatial transformations is presented.

In doing so, we transform Maxwell’s equations (2.1) one after another
from one reference frame to another keeping the time coordinate untouched.
For this task, let f be a injective transformation from a Cartesian coordinate
system x1, x2, x3 to another x′1, x′2, x′3,

x′ = f(x), (2.13)

with Jacobian matrix Λi′
i = ∂xi

′

∂xi
.

In the Cartesian coordinate system the Maxwell equation (2.1a) in index
notation reads

E [ijk]Ek,j = −∂tBi, (2.14)

in which the shortcut

V,j =
∂V

∂xj
, (2.15)

is used. The symbol E [ijk] is the Levi-Civita tensor. In equation (2.14) it
is equal to [ijk] as defined in equation (2.8). This equality breaks when
transforming to a different arbitrary coordinate system [7, §83] [2, sections
3.6, 3.9]:

E [i′j′k′] = |Λ| [i′j′k′]. (2.16)
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This property comes into effect when we transform equation (2.14):

|Λ| [i′j′k′]Ek′,j′ = E [i′j′k′]Ek′,j′ = −∂tBi′ (2.17a)

= −∂tΛi′

iB
i (2.17b)

= −∂tΛi′

iµ
ijHj (2.17c)

= −∂tΛi′

iµ
imδ nmHn (2.17d)

= −∂tΛi′

iµ
imΛ m′

m Λ n
m′Hn. (2.17e)

Please note that Λ m′
m is the inverse of Λ n

m′ :

Λ m′

m Λ n
m′ =

∂xm
′

∂xm
∂xn

∂xm′ = δ nm, (2.18)

and that contravariant vectors written with upper indices transform like

V i′ = Λi′

iV
i, (2.19)

while covariant vectors transform like [7, §83]

Vi′ = Λ i
i′Vi. (2.20)

Slightly rearranged, equation (2.17) becomes

[i′j′k′]
(
Λ k
k′Ek

)
,j′

= [i′j′k′]Ek′,j′ = −∂t
Λi′
iB

i

|Λ|
= −∂t

Λi′
iµ
imΛ m′

m

|Λ|
Λ n
m′Hn. (2.21)

With the definitions

Ẽ =
(
Λ−1

)T
E, B̃ =

ΛB

|Λ|
, µ̃ =

ΛµΛT

|Λ|
, H̃ =

(
Λ−1

)T
H, (2.22)

equation (2.21) can be written as

rotẼ = −∂tB̃ = −∂tµ̃H̃, (2.23)

that has the same form as its Cartesian counterpart (2.1a) with the same
rotation operator as in Cartesian coordinates (rotV )i := [ijk]Vj,k.

Repeating this procedure with the other rotation equation (2.1b) yields

|Λ| [i′j′k′]Hk′,j′ = E [i′j′k′]Hk′,j′ = J i
′
+ ∂tD

i′ (2.24a)

= Λi′

iJ
i + ∂tΛ

i′

iD
i (2.24b)

= Λi′

iJ
i + ∂tΛ

i′

iε
ijEj (2.24c)

= Λi′

iJ
i + ∂tΛ

i′

iε
imδ nmEn (2.24d)

= Λi′

iJ
i + ∂tΛ

i′

iε
imΛ m′

m Λ n
m′En, (2.24e)

⇒ [i′j′k′]Hk′,j′ =
Λi′
iJ

i

|Λ|
+ ∂t

Λi′
iD

i

|Λ|
=

Λi′
iJ

i

|Λ|
+ ∂t

Λi′
iε
imΛ m′

m

|Λ|
Λ n
m′En, (2.24f)
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and with the definitions

J̃ =
ΛJ

|Λ|
, D̃ =

ΛD

|Λ|
, ε̃ =

ΛεΛT

|Λ|
, (2.25)

equation (2.24) can be written as

rotH̃ = J̃ + ∂tD̃ = J̃ + ∂tε̃Ẽ,

that is to say, in the same form as equation (2.1b).
It remains to be shown that the two remaining Maxwell equations (2.1c)

and (2.1d) keep their form too. They contain divergences of vector fields that
are not invariant under coordinate transformations [7, §86]:

(divV )i
′
= |Λ|

(
1

|Λ|
V i′
)
,i′
. (2.26)

Using this property, we can rewrite (2.1c) in the primed coordinate system
equation (2.17)

ρ

|Λ|
=

(
1

|Λ|
Di′
)
,i′

=

(
1

|Λ|
Λi′

iD
i

)
,i′

=

(
1

|Λ|
Λi′

iε
ijEj

)
,i′

=

(
1

|Λ|
Λi′

iε
imδ nmEn

)
,i′

(2.27a)

=

(
Λi′
iε
imΛ m′

m

|Λ|
Λ n
m′En

)
,i′
, (2.27b)

or put differently

div
(
ε̃Ẽ
)

= divD̃ = ρ̃. (2.28)

in the form of (2.1c) with the new definition

ρ̃ =
ρ

|Λ|
. (2.29)

In the same way (2.1d) becomes

0 =

(
1

|Λ|
Bi′
)
,i′

=

(
1

|Λ|
Λi′

iB
i

)
,i′

=

(
1

|Λ|
Λi′

iµ
ijHj

)
,i′

=

(
1

|Λ|
Λi′

iµ
imδ nmHn

)
,i′

(2.30a)

=

(
Λi′
iµ
imΛ m′

m

|Λ|
Λ n
m′Hn

)
,i′
, (2.30b)
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and rewritten with the existing transformation rule (2.22) for µ

div
(
µ̃H̃
)

= divB̃ = 0, (2.31)

this equation has the same form as equation (2.1d).
So, the transformed Maxwell’s equations can be written in the same form

as Maxwell’s equations in a Cartesian coordinate system (2.23), (2.26), (2.28),
(2.31), provided the following ‘transformation rules’ are used

ε̃ =
ΛεΛT

|Λ|
, µ̃ =

ΛµΛT

|Λ|
, (2.32a)

J̃ =
ΛJ

|Λ|
, ρ̃ =

ρ

|Λ|
(2.32b)

Ẽ =
(
Λ−1

)T
E, D̃ =

ΛD

|Λ|
= ε̃Ẽ, (2.32c)

H̃ =
(
Λ−1

)T
H, B̃ =

ΛB

|Λ|
= µ̃H̃. (2.32d)

This means that, solving Maxwell’s equations in the primed coordinate sys-
tem is equivalent to solving them in a Cartesian system with changed per-
mittivity ε̃, permeability µ̃, charges and currents ρ̃, J̃ .

In the following, the relation of the transformation rules (2.32a) to Ple-
banski’s equations (2.7c) is given. The transformation rules (2.32a) also hold
for relative permittivity ε̃r = ε̃/ε0 and relative permeability µ̃r = µ̃/µ0 be-
cause ε0 and µ0 are just constant factors the equations (2.32a) can be divided
with. For the choice εr = µr = 1, that is, starting from vacuum:

ε̃r = µ̃r =
Λ1ΛT

|Λ|
. (2.33)

In the three-dimensional Cartesian coordinate system the metric tensor and
its inverse are the unit matrix. The inverse of the metric tensor in the
primed system is G−1 = Λ1ΛT and the square root of its determinant is√
|G−1| = √g = 1/|Λ| by analogy with equation (2.12). Inserting these into

equation (2.33) yields

ε̃r = µ̃r =
Λ1ΛT

|Λ|
=
√
gG−1, (2.34)

from which the relation to Plebanski’s equations (2.7c) is evident. The
transformation rules (2.34) for ε and µ with initial vacuum are the three-
dimensional version of Plebanski’s constitutive equations.
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2.2 Applications of transformation optics

The equivalence between transformations and changes in material parameters
(2.32) can be used in several ways.

If one has a transformation from a vacuum space to a different space that
corresponds to a given medium, the solution of Maxwell’s equations in this
medium is simply obtained by applying the transformation to the vacuum
solution. So, instead of solving Maxwell’s equations directly in the medium,
one could try to find the corresponding transformation. But this is an inverse
problem and not necessarily easier than solving Maxwell’s equations directly.
A solution for the desired medium might not even exist. For a simple medium
where the electric permittivity is isotropic and µ̃r = 1 there is no correspond-
ing transformation to the vacuum space. The reason can be seen in equation
(2.33). Since both the electric permittivity and the magnetic permeability
are changed in exactly the same manner we always get ε̃r = µ̃r transforming
from vacuum. And this is different from the problem statement.

Of more practical use is the fact that electromagnetic problems in an
arbitrary coordinate system can be calculated in a Cartesian system with
adjusted material parameters [14]. A notable application of this technique is
the C-Method [15, 16] where a transformation is chosen such that the grating
surface of a one-dimensional relief grating becomes flat. This facilitates the
treatment of the boundary conditions on the relief surface.

Another application is to use transformation optics as a design method
[17]. In this technique one starts with a transformation one considers useful
in some way and then, using the transformation rules (2.32), the material
parameters follow directly. Provided one is able to fabricate these material
parameters, one gets a device that applies the chosen design transformation
to the fields travelling through it.

Perhaps the most prominent example of transformation optics design is
the spherical or cylindrical cloaking device [18, 3] that guides the electro-
magnetic fields around a sphere rendering the objects inside invisible. This
cloak is designed with a transformation that shifts the radial coordinate [18,
3]

r′ =

{
R2−R1

R2
r +R1, if 0 < r ≤ R2

r, else,
(2.35)

by the constant R1, the radius of the cloaked sphere, and applies a stretching
of the radial coordinate inside the cloak to achieve continuity at r = R2, the
outer radius of the cloak. A cylindrical and slightly modified version of this
device that works almost as advertised for electromagnetic waves in a narrow
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frequency band was realised by means of metamaterials [19]. These metama-
terials consist of many sub-wavelength blocks that, when put together, act
like a material with the desired material properties (ε, µ) not achievable with
natural materials [20, 21, 22] [23, appendix C.1]. These blocks have to be
smaller then the wavelength of the light the bulk device operates on [20]. This
poses a substantial challenge to fabricate metamaterials for wavelengths in
the visible band. The group around Schurig [19] built the cylindrical cloaking
device with blocks smaller than a millimeter that operate on electromagnetic
waves at around 8.5GHz.

More often than not the devices designed with transformation optics tend
to require complicated materials. This includes anisotropic materials or ma-
terials with magnetic permeabilities different from unity that may be unavail-
able. But, in some designs it is possible to relax the material parameters a bit
without completely losing the desired effect of the transformation medium
[19, 24, 25]. For example, another group [26] devised a cloak for optical wave-
lengths with a relaxed parameter set including µ = 1. They demonstrated
numerically that the cloak still works with the relaxed material parameters,
albeit not as perfectly as the original design.

2.3 Limitations of Plebanski’s approach

The term that couples electric and magnetic fields in equation (2.7) through
the vector w is only present if the transformation acts on time or depends
on time. For purely spatial transformations without time dependence it is
absent as in the equations (2.32). This magneto-electrical coupling term can
be related to the velocity of the medium [2, sections 4.4, 5.4] [13, A. 3.].

But, according to Thompson, Cummer and Frauendiener [27, 28, 29] this
interpretation can only be done if the medium is isotropic and moves slowly
with respect to the speed of light. This group identifies the non-covariance
of Plebanski’s approach as a basic problem of the formalism presented in
section 2.1. This non-covariance restricts Plebanski’s constitutive equations
(2.7c) to stationary media and slowly-moving isotropic media that have to
be put into vacuum space-time. The same group [27, 28, 29] generalised
Plebanski’s approach and developed a covariant formalism for transforma-
tion optics that is valid for all transformations, general linear materials and
arbitrary background space-times. One example where the results of the two
formalisms differ is a time dependent spatial transformation T (t, f(t)x, y, z)
applied to a prior anisotropic medium with vanishing magnetoelectric cou-
pling [29, section V].

Despite these limitations, I use the less general but much simpler theory
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of section 2.1 which is valid with the restriction to purely spatial transfor-
mations that do not depend on time.
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Chapter 3

Methods for the grating
problem

3.1 The grating problem

This section defines the grating problem and describes methods to solve it.
There is a bunch of methods for the grating problem and a neat overview
has been written by Auer [23]. Most transformations inevitably introduce
anisotropic permittivity and permeability tensors, hence the need to imple-
ment a method that can handle anisotropic media. The so-called differential
method is applicable to anisotropic gratings [30, 31, 32, 33]. This method is
used in chapter 4 in which transformations applied to gratings are studied
by means of the numerical solution of Maxwell’s equations.

In a Cartesian coordinate system depicted in figure 3.1 the grating is de-
fined in the domain h0 ≤ z < h surrounded by the two isotropic homogeneous
domains z < h0 and h < z. The grating is a periodic structure with respect
to x, that may vary along the z-direction, but is invariant in the y-direction.
In general, one could allow for periodicity in the y-direction as well. For the
sake of simplicity, this work is restricted to one-dimensional gratings that
are invariant in the y-direction. Besides, it is restricted to monochromatic
electromagnetic fields that propagate in a direction perpendicular to the y-
direction. The grating is defined by the electric permittivity and the magnetic
permeability and free of any non-linear effects where the medium itself may
depend on the electromagnetic fields or the intensity. Since the grating may
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x

zh0 h

T (h0) R(h)

R(h0) T (h)

Figure 3.1: Schematic of a 1D-grating irradiated by plane waves with ampli-
tudes T (h0), R(h) and diffracting plane waves with amplitudes R(h0), T (h).

be anisotropic, the permittivity and the permeability are matrices

ε(x, z) =

εxx(x, z) εxy(x, z) εxz(x, z)
εyx(x, z) εyy(x, z) εyz(x, z)
εzx(x, z) εzy(x, z) εzz(x, z)

 ,

µ(x, z) =

µxx(x, z) µxy(x, z) µxz(x, z)
µyx(x, z) µyy(x, z) µyz(x, z)
µzx(x, z) µzy(x, z) µzz(x, z)

 , (3.1)

that are periodic with respect to x with a period p. It has been shown that
the electromagnetic fields within the grating and beyond in such periodic
problems are pseudo-periodic [34, 35, 5, 23, 32]. Pseudo-periodic means that
the fields are periodic functions with a z-dependent phase and can be written
as a pseudo-Fourier series. For instance, the x-component of the electric field

Ex(x, z) =
∞∑

m=−∞

Ex,m(z) exp(ikx,mx), kx,m = kx,0 +m
2π

p
, (3.2)

where the time dependence exp(−iωt) is suppressed, p is the grating period
and kx,m are the x-components of the wave vectors of each partial wave.
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The constant kx,0 allows to shift the center of kx,m. For instance, kx,0 =
nink0 sin (θin) shifts the center to a value that corresponds to the x-component
of the wave vector of a plane wave incident at an angle θin with vacuum wave
number k0 in an isotropic homogeneous region with refractive index nin.

A short textual explanation for the pseudo-periodicity goes as follows. By
definition, the grating is irradiated by waves of infinite extent with respect
to x. In the grating the fields exist in a world that is periodic with respect
to x and with period p. So, the fields in the grating must be periodic in the
same sense, hence the fields diffracted off the grating must be periodic in the
same sense. So, both the fields inside the grating as well as the fields in the
two homogeneous isotropic domains must be periodic with respect to x and
can be written as Fourier series like (3.2).

The two zones to the left (z < h0) and to the right (h ≤ z) of the grating
are isotropic and homogeneous. In these homogeneous isotropic zones the
electromagnetic fields can also be expanded with respect to z, known as
Rayleigh expansion [34, section 1.2.3]

Ex(x, z) =
∞∑

m=−∞

(
Txm(z0)eikz,m(z−z0) +Rxm(z0)e−ikz,m(z−z0)

)
eikx,mx, (3.3a)

kz,m =
√
k2

0εrµr − k2
x,m, k0 =

2π

λ0

, (3.3b)

where light with vacuum wavelength λ0 and a medium with refractive index√
εrµr are assumed. The field Ex is expanded into an infinite number of

plane waves described by wave vectors k with components kx, kz and ky = 0.
For each kx,m there are two plane waves with amplitudes Tx,m and Rx,m, the
latter propagating in the negative z-direction and the former propagating in
the positive z-direction. The other components of the electric field can be
expanded likewise but with the amplitudes Tx,m, Rx,m exchanged by Ty,m,
Ry,m or Tz,m, Rz,m. But, Tx,m, Rx,m, Ty,m, Ry,m alone form a basis for the
electromagnetic fields in the isotropic homogeneous zones. The remaining
amplitudes for the z-component of the electric field and for the magnetic
field follow from Maxwell’s equations.

Let T (z) be a vector composed of (Tx, Ty)
T , where Tx and Ty are vectors

composed of the amplitudes Tx,m and Ty,m and likewise for R(z). Then
T (h0) and R(h) contain the amplitudes of all wave that move towards the
grating while R(h0) and T (h) do the same for waves that move away from
the grating. The grating problem with so-called outgoing wave condition is
defined is: Given T (h0) and R(h) = 0, what are T (h) and R(h0)? “Outgoing
wave” because no light is coming from the right side. This is a special but
quite usual boundary condition.
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How electromagnetic fields propagate in the isotropic homogeneous re-
gions is analytically known. But the propagation inside the grating structure
is non-trivial. So, for solving this problem we need a method to propagate
the fields through the grating and to achieve the desired boundary conditions
on both sides of the grating.

3.2 The differential method

Maxwell’s equations are a set of partial differential equations that govern
the dynamics of electromagnetic waves. Partial differential equations are
difficult to solve. What the differential method basically does is a translation
of Maxwell’s equations into a set of ordinary differential equations. Ordinary
differential equations are very good understood and there are many numerical
algorithms for their solution.

The differential method is a linear homogeneous ordinary differential
equation derived from the Maxwell equations

rotE = iωµH, rotH = −iωεE, (3.4)

in frequency space obtained by inserting pseudo Fourier series (3.2) for the
electromagnetic fields into the Maxwell equations (2.1a), (2.1b). The z-
components Hz and Ez of the electromagnetic fields can be eliminated and
for the remaining field components an ordinary differential equation

∂zF (z) = iM(z)F (z), F :=


[Ex]
[Ey]
[Hx]
[Hy]

 , (3.5)

can be derived that describes the propagation of the fields in the z-direction
where M is a 4x4-block-matrix. The field vector F and the matrix M (for an
inhomogeneous material) do depend on z but ‘(z)’ is omitted here and there
for the sake of brevity. The field vector is a stacking of four (2N + 1)-column
vectors. Each of these (2N + 1)-column vectors contain the Fourier modes of
the truncated pseudo Fourier series of the field components Ex, Ey, Hx, Hy.
For example

[Ex] =


Ex(−N)

Ex(−N+1)
...

Ex(N)

 , (3.6)
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is such a (2N+1)-column vector for the modesExm(z) withm ∈ [−N, . . . , N ]
(see (3.2)). Since computer memory is limited the Fourier series have to be
truncated at a certain truncation level N .

There are derivations for isotropic gratings [23, 36, 37] and for anisotropic
gratings [30, 31, 32, 33]. The abstract form of the ordinary differential equa-
tion (3.5) holds for all of the cited derivations. But there are different ways
to calculate the 4x4 block matrix M . For isotropic gratings two quarters of
M are zero and the dimension of the ODE can be halved [23, 36, 37].

The differential equation (3.5) describes the evolution of the field vector
through the grating. For a unique solution we need boundary conditions.

3.3 The boundary conditions

The differential equation (3.5) allows to numerically propagate the field vec-
tor through the grating structure. Knowing the field vector on one side of
the grating, one could use one of the many integration algorithms for linear
first-order ordinary differential equations to get the field vector at another
position. In other words,

∂zF (z) = f(z, F (z)) = iM(z)F (z), (3.7a)

F (h0) = Γ3, (3.7b)

where Γ3 is given. This is an initial value problem. But, the grating problem
is not an initial value problem. It is a linear boundary value problem

∂zF (z) = f(z, F (z)) = iM(z)F (z), (3.8a)

Γ0F (h0) + Γ1F (h)− Γ2 = 0, (3.8b)

and has a boundary condition that depends on two positions, h0 and h. The
Γ1,Γ2 are 4(2N+1)×4(2N+1)-matrices with rank [Γ1,Γ2] = 4(2N+1) that
set the boundary condition together with Γ2. Note that the special case of
either Γ0 = 0 or Γ1 = 0 is equivalent to an initial value problem.

The boundary conditions for the grating problem with outgoing-wave
condition are described in terms of T and R (see section 3.1). This means
the incident field on one side of the grating (z < h0) is known and no light
is incident from the other side (h < z). In terms of T and R this is

R(h) = 0, (3.9a)

T (h0) = Lin, (3.9b)

where Lin stands for the desired spectrum of plane waves that irradiate the
grating at z = h0.
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For some algorithms it is more convenient to use the boundary condition
in terms of field vectors as in equation (3.8b). With the conversion matrix
(A.1) that translates T and R to the field vector F it is possible to translate
the boundary conditions back and forth. Doing this for the outgoing wave
condition (3.9) using (A.24)

0 =

(
0 0
1 0

)(
T (h0)
R(h0)

)
+

(
0 1
0 0

)(
T (h)
R(h)

)
−
(

0
Lin

)
=

(
0 0
1 0

)
Q−1F (0) +

(
0 1
0 0

)
Q−1F (h)−

(
0
Lin

)
, (3.10)

yields

Γ0 =

(
0 0
1 0

)
Q−1, Γ1 =

(
0 1
0 0

)
Q−1, Γ2 =

(
Lin

0

)
, (3.11)

by comparison of (3.8b) with (3.10). Now the boundary value problem for
the grating problem with outgoing-wave condition in both formulations is
complete. The next section is about the solution of these types of boundary
value problems.

3.4 The solution of the grating problem

The solution of Maxwell’s equations for the grating problem described in
section 3.1 is equivalent to the solution of a two point boundary value problem
(3.8b). The evolution of the field vector with respect to z is governed by a
linear homogeneous ordinary differential equation with matrix M (3.5). For
the outgoing wave condition the boundary conditions are fixed by equation
(3.11). The only approximation so far is the truncation to 2N + 1 modes
of all Fourier expansions in the calculation. So, the solution of the Fourier
truncated boundary value problem is expected to approach the exact solution
of Maxwell’s equations, the higher the truncation level N is chosen.

There are quite a few algorithms for solving two-point boundary value
problems. For example, there are the shooting methods, finite difference
schemes, the collocation method or the Ritz-Galerkin method [38, chapter 9]
[39, chapter 18]. But before introducing specific algorithms for solving the
grating problem in the sections 3.4.2 and 3.4.3, the next section treats two
fundamental issues that concern all of them.

3.4.1 Memory and stiffness

This section is about two formidable challenges concerning all differential
methods: memory consumption and stiffness. The memory consumption can
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be estimated from the size of the matrix M in equation (3.5). The dimension
of this quadratic matrix is 4(2N + 1) ≈ 8N for one-dimensional gratings. If
every entry needs 16 bytes for saving both the real part and the complex
part of the number in double precision, the amount of memory needed with
the truncation level N is

mem1D(N) = 16(8N)2B = 1024N2B = N2KiB. (3.12)

Assuming a truncation level of N = 100, the memory requirement for M
is about 10MiB which is not a big deal nowadays. For two-dimensional
gratings, that is, if the y-direction is not invariant but is periodic too, the
memory consumption for saving M grows with N4

mem2D(N) = 16(8N)4B = 64N4KiB, (3.13)

if the same truncation level N is used in the two dimensions. For N = 100,
this is about 6TiB, which is quite a lot nowadays. So, the memory con-
sumption poses a big issue, in two-dimensional grating problems but not in
one-dimensional ones.

Another formidable issue arises from the matrix M but this one is not
restricted to 3D. Stiffness makes the numerical integration of ordinary dif-
ferential equations more difficult [40, section 7.4]. If the eigenvalues of the
matrix M are very different in magnitude, there are parts of the solution
of the ordinary differential equation (3.5) that vary very slowly compared
to other parts of the solution that vary rapidly even if the sum of all those
parts is a smooth and slowly varying function [39]. Consequently, in order to
have an accurate solution, explicit integrators have to take very small steps
to keep track of the rapidly varying parts of the solution [39, 40].

It turns out that grating problems are stiff and that the stiffness grows
with the truncation level [32, section 7.8]. But using a high truncation level
N is desirable because N limits the accuracy of the differential method.

This is an intrinsic issue of the grating problem that most researchers in
this field inevitably face [23, section 3.2] [41, 42, 31, 43, 44, 45, 46, 47, 37] and
identify as pollution by evanescent modes. These evanescent modes are parts
of the solution that grow or decay exponentially in the z-direction. Because
computers have a limited machine precision, rounding errors may become
too large and important digits may be lost in calculations. This results
in numerical instabilities. The larger the domain of integration, the bigger
the instabilities. Large can mean a grating thickness of λ/2 [34, chapter 4]
depending on the truncation level and the material of the grating.

The stiffness due to the evanescent modes not only affects the stability of
the numerical integration of the differential equation (3.5). As a consequence
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it also affects the matching of the boundary conditions at the two bound-
aries. An explanation follows. All matching procedures turn the two point
boundary value problem into algorithms involving initial value problems. In
other words, at some stage in these algorithms a solution is propagated from
one point to another, whether analytically or numerically. And if the solu-
tion of the initial value problem to be solved is ill-conditioned, the matching
algorithm itself is ill-conditioned. And the propagation of the solution is
ill-conditioned, since a slight change in the input may change drastically the
output due to the exponentially varying parts of the solution, if they are
present. And they are present if the truncation level N is sufficiently large
[32, section 7.8].

Fortunately, there are countermeasures for the stiffness issue. There are
numerous ways to improve the stability of the numerical integration for stiff
initial value problems [40] [39, section 17.5] [48, chapter 5] . But this does
not counter the ill-conditioned matching procedures due to evanescent modes
explained in the previous paragraph. The evanescent modes can be avoided
or decreased in number by decreasing the truncation level N or increasing the
grating period p. Both of these countermeasures are undesirable. Changing
the grating period changes the physical problem and decreasing the trun-
cation level decreases the accuracy of the simulation. As mentioned in the
previous paragraph, the problem becomes bigger, the larger the domain of
integration, for the following reason: The blowup and the decay of the expo-
nentially varying parts of the solution become more extreme, the larger the
domain of integration. In that case, the matching between the boundaries
of the domain of integration becomes unstable. If the domain of integration
is small, the exponential blowup of the evanescent modes is lower and the
matching procedure is better conditioned. Decreasing the grating thickness
is undesirable because this changes the physical problem.

But even if the grating is homogeneous in the z direction, we have the
freedom to view the whole grating domain [h0, h] as a stack of several fic-
titious subdomains h0 = z0 < z1 < ... < zm = h with m + 1
subboundaries zk. Each of the subdomains is much thinner than the whole
domain. If the boundary value problem on the whole domain can be cast into
an algorithm that consists of several initial value problems on the thin sub-
domains [zk, zk+1], plus matching operations on neighbouring subboundaries,
then, the single initial value problem over the whole domain with subsequent
ill-conditioned matching over the whole domain at once is avoided.

This is the basic trick of the multiple shooting method [49], the enhanced
transmittance matrix approach [37], the R-matrix propagation algorithm [50,
47] and the S-matrix propagation algorithm [46, 51, 52, 53, 45]. All of
them solve the intrinsic stiffness issue of grating problems with this divide
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and conquer strategy. They do this at the cost of additional computational
complexity or memory consumption.

Studying these algorithms is not the aim of this work. But I think it
is necessary to explain why they are needed and to explain the algorithms
used for the research of transformed gratings treated in section 4 in order to
enable reproducibility of the results.

3.4.2 The multiple shooting method

The shooting method reformulates the boundary value problem (3.8b) as a
root finding problem involving an initial value problem [39, chapter 18] [38,
chapter 9]. In the shooting method the solution at one boundary F (h0) is
guessed initially [39, chapter 18] [38, chapter 9]. Using this guess of the
solution at the boundary z = h0, the solution F (h) at the other boundary
z = h can be obtained by solving the initial value problem (3.7) along the
interval [h0, h], in other words, by propagating the solution F (h0) from one
boundary to the other. This can be done with numerical integrating methods
for ordinary differential equations [40] [38, chapter 8] [54, chapter 9] [39,
chapter 17] choosing an appropriate integrator and stepsize [40, section 7.4]
since the ODE is stiff [section 3.4.1]. If the interval [h0, h] is homogeneous,
the initial value problem (3.7) can be solved in one step

F (h) = V −1exp(iD(h− h0))V F (h0), (3.14)

with a diagonalisation of the matrix M = V −1DV [40, section 1.3]. Having
the solution candidates at both boundaries, F (h0), F (h), one can plug them
into the boundary condition (3.8b) and evaluate whether the guess is good.
The guess is perfect if the boundary condition (3.8b) is fulfilled, that is to
say, if the residual

Φ(F (h0; guess)) := Γ0F (h0; guess) + Γ1F (h; propagated guess)− Γ2,
(3.15)

of the boundary condition (3.8b) is zero in all entries. Let T̂ (h0 7→ h) be an
operator that, when applied to a field vector, maps it from z = h0 to z = h:

T̂ (h0 7→ h)F (h0) = F (h). (3.16)

Then equation (3.15) can be written in a more intuitive form

Φ(F (h0)) :=
(

Γ1 + Γ2T̂ (h0 7→ h)
)
F (h0)− Γ3

!
= 0, (3.17)
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in which the general procedure of the shooting methods is evident. The prob-
lem of finding a solution of the boundary value problem (3.8b), that is, finding
a solution to an ordinary differential equation that obeys boundary condi-

tions at two points, is translated into the root finding problem Φ(F (h0))
!

= 0
which contains the initial value problem T̂ (h0 7→ h)F (h0). Of course, the
first guess for F (h0) seldom is perfect. But, there are methods, for exam-
ple Newton’s method, that enhance the guess iteratively [39, chapter 9] [54,
chapter 4] [38, chapter 4] such that Φ approaches zero until a prescribed tol-
erance is achieved. The convergence to the solution is not guaranteed in all
cases though. Good algorithms converge if the initial guess is close enough
to the real solution and more often than not, the rate of convergence can be
determined in advance [39, chapter 9]. Each new iteration of the shooting
method involves finding a new guess (aiming) and propagating this guess
(shooting), hence the name.

But whatever the root finding algorithm and whatever the integrator,
this simple method suffers the stability problem explained in section 3.4.1.
The residual Φ (3.17) is very sensitive to its input data F (h0) if evanescent
modes are propagated over a distance large enough. This makes the root
finding problem (3.17) ill-conditioned even in cases where the boundary value
problem (3.8b) is well-conditioned [49].

The multiple shooting method cures this problem by a subdivision of
the root finding problem (3.17) on the domain [h0, h] into a root finding
problem on m subdomains h0 = z0 < z1 < . . . < zm = h for a solution that
satisfies the same boundary conditions (3.17) at the two outermost bound-
aries (z0 = h0, zm = h) and is continuous at the subboundaries z1, . . . , zm−1.
On each subdomain the solution is propagated over a distance (zk+1 − zk)
much smaller than (h− h0):

F (zk+1) = T̂ (zk 7→ zk+1)F (zk) := T̂kF (zk). (3.18)

This subdivision increases the dimension of the root finding problem (3.8b)

Φ =



Γ0 0 · · · Γ1T̂m−1

T̂0 −1 0 · · · 0

0 T̂1 −1 0
...

...
. . . . . .

...
...

. . . . . . 0

0 0 T̂m−2 −1





F (z0)
F (z1)

...

...

...
F (zm−1)


+



Γ2

0
...
...
...
0


!

= 0,

(3.19)

but decreases its sensitivity to the input data [49] [39, section 18.2] [38,
chapter 9]. The first row of (3.19) is the residual of the boundary condition,
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similar to equation (3.17). The other rows are the demand for continuity
across the subboundaries. The shooting method with a single shooting inter-
val (3.17) is a special case of this multiple shooting method (3.19) with the
choice m = 1. For sufficiently many subdomains the stability problem due
to the evanescent modes is evaded. But how many are needed depends on
the total distance (h− h0), the truncation level N and the grating material
(ε, µ).

Newton’s method is not the only way to solve the problem (3.19). Maxwell’s
equations are linear and the response of the media in the domain of integra-
tion is assumed to be linear as well. With these restrictions there are linear
maps that map the solution at one point F (z) to the solution at another
point F (z + ∆z) [35, sections 4.2 and 5.2] [34, chapter 4]. And linear maps
in vector spaces of finite dimensions can be written as a matrix [55, section
2.2]. Therefore, it is possible to get matrix representations of the operators
T̂ . With this knowledge, equation (3.19) can be viewed as linear system.
And as a linear system it can be solved with numerical algorithms for lin-
ear systems, with direct algorithms [38, chapter 2], with iterative algorithms
[38, chapter 11] and especially with algorithms that exploit the almost block
diagonal form [56, 57] of equation (3.19).

The choice of the algorithm dictates whether transfer matrices are actu-
ally needed. But even if they are not needed, it can save computation time
to calculate them once and use them many times. The solution of an initial
value problem over a given interval is as simple as a matrix vector multi-
plication with the transfer matrix for that interval. Solving the same initial
value problem numerically entails more computations. This last paragraph
explains how to calculate transfer matrices. The transfer matrix for a ho-
mogeneous interval [zk, zk+1] without modulation in the lateral direction is
known analytically [58]. With modulation in the lateral direction, the diag-
onalisation technique in equation (3.14) can be used. But the intervals need
not be homogeneous in the z-direction, the material may depend on z. In
that most general case one can resort to the numerical method. The ma-
trix representation of a linear map is determined by the images of the basis
vectors [55, section 2.2]. These images are the solution of the initial value
problems

d

dz
F (z) = f(z, F (z)) = iM(z)F (z),

F (zk) = ei, for i ∈ 0, . . . , 4N, (3.20)

along the interval [zk, zk+1] where ei are vectors of a basis for the vector space
C4(2N+1) the field vector F (zk) lives in [34, section 4.2.2] [35, sections 4.2 and
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5.2]. A popular choice is the following basis


1
0
0
...

 ,


0
1
0
...

 ,


0
0
1
...

 , . . .

 , (3.21)

consisting of 4 (2N + 1) vectors which is the dimension of the aforementioned
vector space. These basis vectors are propagated numerically along the in-
terval [zk, zk+1] and the solutions at zk+1 are the images of the linear map
and hence the columns of the transfer matrix T̂k [34, section 4.2.2].

3.4.3 The S-matrix propagation algorithm

S-matrix is an abbreviation for scattering matrix. The scattering matrix Š
[53, 52] relates the electric field amplitudes on both sides of the grating as
follows (

R(h0)
T (h)

)
=

(
Š11 Š12

Š21 Š22

)(
T (h0)
R(h)

)
. (3.22)

The scattering matrix turns the boundary value problem (3.8b) into a ma-
trix vector multiplication if the boundary conditions are chosen such that
T (h0) and R(h) are known while R(h0) and T (h) are unknown. This sec-
tion explains how to get Š11 and Š21. These two blocks are sufficient for the
outgoing wave condition (

R(h0)
T (h)

)
=

(
Š11

Š21

)
T (h0), (3.23)

where T (h0) is given and R(h) = 0.
In section 3.4.2 transfer matrices

F (zk) = T̂ (zk+1 7→ zk)F (zk+1), (3.24)

that relate the field vector at two different positions are used. Since the scat-
tering matrix (3.23) is defined for amplitudes T,R, of Rayleigh expansions of
the electric field (3.3), working with transfer matrices for these amplitudes
is more convenient. With the conversion matrix Q (A.1) switching from one
formulation to the other is not difficult:(

T (zk)
R(zk)

)
= Q−1T̂ (zk+1 7→ zk)Q

(
T (zk+1)
R(zk+1)

)
=: Ť (zk+1 7→ zk)

(
T (zk+1)
R(zk+1)

)
.

(3.25)
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This basis change is not only possible in the isotropic homogeneous zones
z < h0, h < z. It is also valid at arbitrary positions inside the grating
zone because adding infinitesimal vacuum layers at these positions does not
change the grating physically but permits the use of Rayleigh expansions at
these positions [53, 52].

Vincent [34, chapter 4] published a method in 1980 that uses a transmis-
sion matrix Ť over the complete grating domain(

T (h0)
R(h0)

)
=

(
Ť11 Ť12

Ť21 Ť22

)(
T (h)
R(h)

)
, (3.26)

and is restricted the outgoing wave condition R(h) = 0. With this restriction
a quick calculation reveals that

T (h) = Ť−1
11 T (h0), (3.27a)

R(h0) = Ť21T (h) = Ť21Ť
−1
11 T (h0). (3.27b)

Comparing this with equation (3.23) we can identify

Ť21Ť
−1
11 = Š11, (3.28a)

Ť−1
11 = Š21, (3.28b)

as the two blocks of the S-matrix. So, it seems as if this method solves all grat-
ing problems with outgoing wave condition by means of the two submatrices
Ť11, Ť21 of the transfer matrix. And this is true, analytically. Numerically,
it suffers the very same stability issues explained in section 3.4.1. Inevitably
Vincent experienced this instability and found that the limits of applicability
of this method are very sensitive to parameters such as the grating depth,
the truncation level and the refractive index of the grating. Furthermore, he
attributed the instability mainly to the matrix inversion [34, section 4.2.5].
This can be understood with the eigenvalues of the transfer matrix. The
transfer matrix, representing a linear map for the solution across a given
interval, reflects the exponential growth and decay of evanescent modes in
its eigenvalues. Exponential growth results in a high amplification over large
distances and hence in large eigenvalues. Exponential decay results in low
eigenvalues. The condition number of a matrix A is defined as

κ(A) := ||A|| ||A−1|| ≥ ||AA−1|| = ||1|| = 1, (3.29)

where || . || is a matrix norm [38, section 2.2.2]. The condition number de-
pends on the choice of the matrix norm. But whatever the choice of the
norm, the condition number gives an estimate for the relative error for the
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numerical solution of a linear system Ax = b [38, section 2.2.2]. Since ma-
trix inversion is done by the solution of dim(A) linear systems, the condition
number can be used as an estimate for the numerical errors done in matrix
inversion A−1 [59, section 1.2.7]. The spectral radius of the matrix gives a
lower bound for compatible matrix norms [59, lemma 1.1.1]

ρ(A) ≤ ||A||. (3.30)

So, using that in equation (3.29) gives a lower bound

κ(A) = ||A|| ||A−1|| ≥ ρ(A)ρ(A−1), (3.31)

for the condition number κ. If A has eigenvalues large in magnitude, its
spectral radius ρ(A) is large. If A has eigenvalues low in magnitude, the
spectral radius of ρ(A−1) is large because the inverse matrix A−1 has the
inverse eigenvalues of A. The matrix to be inverted Ť11 has both properties
at the same time if exponentially growing and decaying parts of the solution
are present and mapped by Ť11 across a sufficiently large distance. Then, its
condition number κ(Ť11) is large and the inversion done in equation (3.27) is
ill-conditioned.

Mapping across smaller distances keeps the exponential growth and decay
within limits smaller than for larger distances. Then the condition numbers
κ(Ť11), κ(Ť21), get lower and computations and inversions with these matrices
get better conditioned. This is exploited by the divide and conquer technique
used in the S-matrix propagation algorithm. Let us use a grid h0 = z0 <
z1 < ... < zm = h and the notation

Tk = T (zk), (3.32)

Rk = T (zk), (3.33)

for the amplitudes of the Rayleigh expansions at the two outermost bound-
aries z0, zm and at the infinitesimal vacuum layers located at the subbound-
aries. Furthermore, with m subdomains [zk, zk+1] come m transfer matrices(

Tk
Rk

)
=

(
Ťk,11 Ťk,12

Ťk,21 Ťk,22

)(
Tk+1

Rk+1

)
, (3.34)

and the scattering matrix for the subdomain [zk, zm] shall be defined as(
Rk

Tm

)
=

(
Šk,11

Šk,21

)
Tk. (3.35)
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Then inserting the first row of equation (3.34) into the first row of equation
(3.35) yields

Rk = Šk,11Tk = Šk,11

(
Ťk,11Tk+1 + Ťk,12Rk+1

)
(3.36)

= Šk,11

(
Ťk,11 + Ťk,12Šk+1,11

)
Tk+1, (3.37)

while inserting the first row of equation (3.35) into the second row of equation
(3.34) yields

Rk = Ťk,21Tk+1 + Ťk,22Rk+1 =
(
Ťk,21 + Ťk,22Šk+1,11

)
Tk+1. (3.38)

Combining both results gives the recursion

Sk,11 =
(
Ťk,21 + Ťk,22Šk+1,11

) (
Ťk,11 + Ťk,12Šk+1,11

)−1
. (3.39)

Furthermore, inserting the first row of equation (3.34) into the second row
of equation (3.35) yields

Tm = Šk,21Tk = Šk,21

(
Ťk,11Tk+1 + Ťk,12Rk+1

)
(3.40)

= Šk,21

(
Ťk,11 + Ťk,12Šk+1,11

)
Tk+1. (3.41)

Combining this with a shifted index version of itself

Tm = Šk+1,21Tk+1, (3.42)

gives the recursion

Šk,21 = Šk+1,21

(
Ťk,11 + Ťk,12Šk+1,11

)−1
. (3.43)

Both equations (3.39) (3.43) give a recursion for calculating the scattering
matrix blocks for the subdomain [zk, zm] with the scattering matrix blocks
for the subdomain [zk+1, zm] and the transfer matrices for the subdomain
[zk, zk+1]. Starting at k = m and applying the recursion until k = 0 gives
the scattering matrix blocks for the complete grating domain [z0, zm]. The
recursion is started with Sm,11 = 0 and Sm,21 = 1. This corresponds to a
layer with zero reflectance and a transmittance of 1 or, put differently, to
the scattering matrix for an infinitesimal vacuum layer. In this calculation
the scattering at the interfaces between the grating zone and the isotropic
homogeneous zones is not yet taken into account. This means that without
modification of these calculations, the grating is assumed to reside in vacuum.
The additional scattering due to the presence of media around the grating
can be incorporated before the recursion by setting different start values
Sm,11, Sm,21 [52] or afterwards [53, section 4.3].
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For the case of m = 1, the grid consists of two points h0 = z0 < zm = h,
hence no subdivision of the grating domain is done. In that case, the recursion
equations (3.39), (3.43), are only called once and the result

Š0,11 =
(
Ť1,21 + Ť1,22Š1,11

) (
Ť1,11 + Ť1,12Š1,11

)−1 Š1,11=0
=

(
Ť1,21

) (
Ť1,11

)−1
,

(3.44)

Š0,21 = Š0,21

(
Ť0,11 + Ť0,12Š1,11

)−1 Š1,11=0
= Š0,21

(
Ť0,11

)−1 Š1,21=1
=

(
Ť0,11

)−1
,

(3.45)

is equivalent to Vincent’s method (3.28). So, why and when is the recur-
sive S-matrix algorithm more stable than Vincent’s method? As explained
earlier in this section the matrix of the transfer matrix Ť11 used in Vin-
cent’s method (3.28) has a high condition number if exponentially growing
and decaying parts of the solution are to be mapped across a sufficiently
large distance [h0, h]. This makes the inversion Ť−1

11 ill-conditioned. In the
S-matrix algorithm the matrices to be inverted are

(
Ťk,11 + Ťk,12Šk+1,11

)
in

the recursion equation (3.39) and
(
Ťk,11 + Ťk,12Šk+1,11

)
in the recursion equa-

tion (3.43). These matrices contain transfer matrices too. But these transfer
matrices map the solution from one subboundary to the next one, across a
subdomain [zk, zk+1], not across the whole grating domain. The more subdo-
mains are used and the smaller the subdomains [zk, zk+1], the lower are the
condition numbers of these transfer matrices and their disastrous influence
on the matrix inversion in the recursion formulas (3.39) (3.43) fades more
and more away. The other matrix involved in the matrix inversions, Šk+1,11,
relates the transmitted fields at the subboundary zm+1 with the transmitted
fields at the same subboundary (3.35). This relation is no map across dis-
tances and hence no issues due to exponential growth and decay arise here.
This is in contrast to the matrix Šk+1,21 that relates the transmitted fields at
the subboundary zm+1 to the transmitted fields at the outermost boundary
zm = h. It is used in the recursion equation (3.43). But it is not involved in
the matrix inversion.
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Chapter 4

Transformed diffraction
gratings

4.1 Axial linear transformations

In this section, a linear transformation in the z-direction is applied to a
periodic medium within −d < z < 0. In a similar fashion the team around
Roberts [60] transformed a planar-convex lens. The linear transformation
leaves the lateral directions untouched, x′ = x, y′ = y, but transforms the
axial directions as follows

z′ = t(z) =


z + d(1− a), if z < −d
az, if −d ≤ z < 0

z, if 0 ≤ z,

(4.1)

with the inverse transformation

z = t−1(z′) =


z′ − d(1− a), if z′ < −ad
z′/a, if −ad ≤ z′ < 0

z, if 0 ≤ z′.

(4.2)

The region z < −d is shifted in order to make the transformation continuous
at z = −d. This is the left boundary of the region −d ≤ z < 0 and the
transformation stretches or compresses this region by the factor a ∈ R. Next
to it, in the region 0 ≤ z, the transformation (4.1) is the identity. The
material parameters of the transformed structure are calculated with the
transformation rules (2.32)

ε′ =
ΛεΛT

|Λ|
, µ′ =

ΛµΛT

|Λ|
, (4.3)
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where Λ is the Jacobian

Λ =

1 0 0
0 1 0
0 0 ∂zz

′

 , (4.4)

and ε, µ are the permittivity and permeability of the original structure. If
not otherwise mentioned, relative permittivity and permeability tensors are
used throughout this section. Since the Jacobian is a matrix of derivatives, a
constant shift yields a unit matrix as Jacobian with unit determinant. Thus,
the contribution of the Jacobian matrix to µ′ and ε′ is a unit matrix in the
regions z < −d and 0 ≤ z. So,

Λ =


1 0 0

0 1 0

0 0 a

 , if −d ≤ z < 0

1, else,

(4.5)

and the determinant

|Λ| =

{
a, if −d ≤ z < 0

1, else.
(4.6)

Inserting these results into (4.3) and assuming an isotropic ε yields

ε̃ =




1
a

0 0

0 1
a

0

0 0 a

 ε(x, z), if −d ≤ z < 0

ε(x, z), else,

(4.7)

and substituting z with the inverse transformation gives the relative permit-
tivity of the transformation medium

ε̃ =




1
a

0 0

0 1
a

0

0 0 a

 ε(x, t−1(z′)), if −d ≤ t−1(z′) < 0

ε(x, t−1(z′)), else.

(4.8)

In the same way the relative permeability µ̃ is

µ̃ =




1
a

0 0

0 1
a

0

0 0 a

 , if −d ≤ t−1(z′) < 0

1, else,

(4.9)
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where µ = 1 is assumed for the original medium. The transformation medium
is given by the functional forms of ε̃ in equation (4.8) and µ̃ in equation (4.8).
Both are calculated with the transformation rules (2.32) derived in section
2.1. There, an interpretation is made. The Maxwell equations transformed
to a primed coordinate system are considered as Maxwell’s equations in the
original Cartesian coordinate system with changed materials, charges, cur-
rents and fields. The numerical calculations done in this chapter are always
done with both the original medium and the transformation medium. In
both cases the numerical calculations are carried out in the same Cartesian
coordinate system. The original medium is already defined in that system.
The transformation medium in that system is given by the equations (4.8)
(4.9) with the primes dropped.

An example follows. Let us consider a diffractive optical element (DOE)
that consists of a phase plate of thickness d < λ with varying refractive index
in the x-direction. Since the plate is thin, the thin element approximation
(TEA) can be used to describe its effect on a light wave u

u+ = u− exp(in̂(x)k0d), (4.10)

n̂(x) = n(x) + iκ(x), (4.11)

where n(x) is the refractive index plate and κ is the extinction coefficient of
the material [61, section 4.2]. This approximation is used to design a DOE
that focuses a plane wave in the following way. A focus in position space
is a δ-distribution and in frequency space it is a uniform distribution. A
truncated discrete uniform distribution is set to zero for frequencies higher
than NA/λ with respect to their absolute value. The result u0 is propagated
in vacuum in the negative z-direction over a distance f , the desired focal
length. This is done by multiplying the discrete frequency distribution with
the propagator

u(−f) = u0 exp(−i Re(kz,m) f), (4.12)

also known as angular spectrum method [61, section 3.3]. The kz,m used here
are the same as in equation (3.3). Taking the real part of kz does not change
the result if NA < 1 but prevents numerical problems due to floating point
arithmetic. Then, the wave u(−f) is transformed back to position space.
Then, the phase of this signal is binarised and translated to a refractive
distribution n(x) of thickness d with the thin element approximation (4.10).
Within the limits of this approximation, this DOE produces a focus at z = f
when being illuminated by a plane wave with wavelength λ from the left. For
the choice κ = 0, the DOE has no absorption.
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(a) original DOE, εxx = εyy = εzz (b) ε̃xx

(c) ε̃zz (d) µ̃xx

Figure 4.1: Relative permittivity of the original DOE 4.1(a) and several
components of the relative permittivity and permeability tensors of the trans-
formed DOE. The latter, ε̃ and µ̃, are determined by the equations (4.8),
(4.9).
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For the choices λ = 0.633µm, thickness d = λ/2, f = 1000µm, NA = 0.5,
period p = 100µm, and two states for the refractive index, one of them unity,
the corresponding relative permittivity εxx =

√
n is shown in figure 4.1(a).

The relative permittivity and permeability tensors of the transformed
version of this device are determined by the equations (4.8), (4.9) and some
components are depicted in figure 4.1 for the choice a = 1/2. This choice
makes the transformed plate half as thick as the original plate.

Since the transformation leaves the region 0 < z unchanged and is contin-
uous everywhere else, I expect the transmitted light in this region to be the
same for both devices if both of them are irradiated with the same light from
the left. To check this, I solve Maxwell’s equations numerically for both prob-
lems as a one-dimensional grating problem (section 3.1) with outgoing wave
boundary condition (section 3.3) by means of the differential method (section
3.2) in combination with the multiple shooting method (section 3.4.2). This
implies assuming periodicity in the x-direction.

On the left boundary, a perpendicularly incident plane wave of amplitude
1V/m linearly polarised in the y-direction is chosen as boundary condition.
In terms of amplitudes R and T of plane waves used in Rayleigh expansions
of the electrical field (3.3) (A.3) the boundary conditions are

R(0) = 0, (4.13)

Txm(h0) = 0, ∀ m ∈ {−N, . . . , N} , (4.14)

Tym(h0) =

{
1, if m = 0

0, else,
(4.15)

and kx,0 = 0, where h0 is −d for the original DOE and −d/2 for the trans-
formed DOE.

For the differential method, I calculate the matrix M of the differential
equation (3.5) in the way described by Watanabe, Petit and Nevière in 2002
[30, equation 65], but with three modifications. One is a different naming
of the coordinate axes: my z-axis is their inverted y-axis. The second mod-
ification is the choice ϕ = 0 throughout all calculations. The differential
method in this paper can be used for relief gratings with a surface func-
tion whose derivative is tan(ϕ). I treat the DOE as a stack of many planar
(ϕ = 0) grating layers. The third modification affects the equations 45-52
in the same paper [30] and concerns the discrete convolutions in truncated
frequency space. The discrete convolutions in these equations are written as
a matrix vector where the matrix is a Toeplitz matrix built from one of these
vectors. Due to Auer’s findings [36, section 3.5] [62] and advice from my
colleagues, I decided to use circulant Toeplitz matrices in these equations.
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To solve the boundary value problems, I apply the multiple shooting
described in section 3.4.2 with eight equally spaced subdomains and a trun-
cation level of N = 333. I obtain the Fourier coefficients of the material
functions by evaluating them on a grid of 2N + 1 equidistant points over
one period and subsequent application of discrete Fourier transformations
on the results. I calculate the transfer matrix for the subdomains with the
diagonalisation technique (3.14) and solved the linear system (3.19) with the
matlab [63] routine “mldivide”. Furthermore, I use the matlab routines “fft”
for discrete Fourier transforms, “inv” for Matrix inversions and “eig” for di-
agonalisations. For the design of the original DOE I use a matlab script once
written by Tim Stenau with minor modifications.

The transmitted fields in the region 0 < z should be identical in both
cases. The solution of the linear system contains F (z0), . . . (zm−1). So, to get
the solution at the right boundary z = 0 one last multiplication with a trans-
fer matrix F (0) = F (zm) = Tm−1F (zm−1) is necessary. With the solution at
the right boundary F (0) for both problems, I calculate the propagative fields
in the region 0 < z by means of the Rayleigh expansion (A.3). With these
results, the two plots shown in figure 4.2 were created. There is no discernible
difference for the naked eye between both plots. But a small difference can
be seen in the numbers∥∥∥F (0)− F̃ (0)

∥∥∥
1

=
∑
m

∣∣∣Fm(0)− F̃m(0)
∣∣∣ ≈ 1.6 10−11, (4.16)

that I attribute to numerical errors in either the solution of the linear system
(3.19) or the diagonalisation (3.14).

The question arised whether this works also with non-perpendicular inci-
dence. So, I repeated the same calculations with slightly different boundary
conditions at the left boundary

Tym(h0) =

{
1, if m = 1

0, else.
(4.17)

This corresponds to a plane wave with an incident angle of about 0.36°. As
depicted in figure 4.3 the foci are shifted and their shape has changed. But
again, there is no discernible difference for the original and the transformed
DOE. And the `1 norm of the difference of the solutions at the right boundary
does not change much ∥∥∥F (0)− F̃ (0)

∥∥∥
1
≈ 1.3 10−11. (4.18)
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(a) focus of the original DOE (b) focus of the transformed DOE

Figure 4.2: Comparison of the foci of the original and the transformed
DOE being irradiated perpendicularly by a plane wave. The plots show
|E|2/ (V/m)2 in a region around the expected focal point.

(a) focus of the original DOE (b) focus of the transformed DOE

Figure 4.3: Comparison of the foci of the original and the transformed DOE
being irradiated by a plane wave with an angle of incidence of about 0.36°.
The plots show |E|2/ (V/m)2 in a region around the expected focal point.

39



−d 0
z

−p/2

0

f(−d)
f(0)

p/2

x

Figure 4.4: Relative permittivity distribution (4.19) of a grating with a linear
contour f(z).

4.2 Lateral cubic transformations

In this section, a cubic transformation in the x-direction is applied to gratings
with the aim to keep their diffraction efficiencies unchanged. If not otherwise
mentioned, relative permittivity and permeability tensors are used through-
out this section. The relative permittivity function of the original grating
shall be defined as

ε(x, z) =


ε1, if |x| < f(z) and − d ≤ z ≤ 0

ε2, if f(z) ≤ |x| and − d ≤ z ≤ 0

1, else,

(4.19)

in a period x ∈ [−p/2, p/2] with a continuous function f(z) that defines the
lateral contour of the grating. A schematic example for a linear contour f(z)
is depicted in figure 4.4. The relative permeability of the original grating
shall be one.

In the last section a linear contraction in the z-axis is done. Here, I
present you a transformation that maps the contour f(z) of the aforemen-
tioned grating to a constant. Therefore a transformation in the x-direction is
needed. I demand the transformation to be continuous everywhere because
additional reflections occur at discontinuities [64, 65]. These additional re-
flections have an impact on the diffraction efficiencies I want to preserve.
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Furthermore, the transformation shall preserve the axial symmetry of the
problem (4.19). This is not a necessity but shortens the calculations.

Let t(x, z) denote the transformation. Then the properties

t(x, z) = −t(−x, z) (4.20a)

t
(p

2
, z
)

=
p

2
(4.20b)

t(f(z)) = xc, (4.20c)

ensure that the transformation preserves the axial symmetry of the problem
(4.20a), is continuous at the period boundaries (4.20b) and maps the contour
f to the constant xc (4.20c). The transformation t defined by these proper-
ties (4.20) is applied locally on a finite domain [zmin, zmax] that contains the
domain of the original grating (−d, 0] ⊆ [zmin, zmax]. Outside of [zmin, zmax]
the transformation is the identity by definition. At the boundaries of this
non-trivially transformed domain the transformation has to be continuous as
well. This implies

t(x, z) = x, if z ≤ zmin or zmax ≤ z. (4.21)

Since the inverse transformation is needed for the material of the transformed
grating, the last property imposed on the transformation is injectivity.

A cubic polynomial

t(x, z) = a0(z) + a1(z)x+ a2(z)x2 + a3(z)x3, (4.22)

has enough degrees of freedom to satisfy all desired properties (4.20) and
may be injective. From property (4.20a) follows a0(z) = 0 = a2(z), so

t(x, z) = a1(z)x+ a3(z)x3. (4.23)

Then from property (4.20b)

p

2
= t
(p

2
, z
)

= a1(z)
p

2
+ a3(z)

(p
2

)3

⇒ a1(z) = 1− a3(z)
(p

2

)2

, (4.24)

and with property (4.20c)

xc = t(f(z), z) = a1(z)f(z) + a3(z)f 3(z)

(4.24)
=

(
1− a3(z)

(p
2

)2
)
f(z) + a3(z)f 3(z)

= a3(z)

(
f 3(z)− f(z)

(p
2

)2
)

+ f(z), (4.25)
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follows

a3(z) =
xc − f(z)

f 3(z)− f(z)
(
p
2

)2 =
1− xc/f(z)(
p
2

)2 − f 2(z)
. (4.26)

With these coefficients, the properties (4.20) are satisfied. If f(x, z) grows
strictly monotonically with respect to x, it is injective:

0 < ∂xf(x, z) = a1(z) + 3a3(z)x2

= 1− p

2
a3(z) + 3a3(z)x2 = 1− a3(z)

((p
2

)2

+ x2

)
, (4.27)

if a3(z) ≤ 0 this is true. If 0 < a3(z)

0 < 1− a3(z)

((p
2

)2

+ 0

)
≤ 1− a3(z)

((p
2

)2

+ x2

)
= ∂xf(x, z)

⇒ a3(z)
(p

2

)2

< 1
(4.26)⇒

(p
2

)2 1− xc/f(z)(
p
2

)2 − f 2(z)
< 1⇒ 1− xc

f(z)
< 1− f 2(z)(

p
2

)2

⇒ xc
f(z)

<
f 2(z)(
p
2

)2 ⇒ f(z) <
3

√
xc

(p
2

)2

=: fmax. (4.28)

So, for the transformation to be injective the contour f(z) must not exceed
the threshold fmax which depends on the grating period and xc.

There is an analytical expression for the inverse transformation. It is
t−1(x′) = x/a1, if a3 = 0. If a3 6= 0, the analytical expression is compli-
cated. It contains divisions by a3 which approaches zero as f approaches xc.
Therefore, I avoid to evaluate this expression. Instead, I use a simpler way
to invert the transformation. I solve t(x)− x′ = 0 for x iteratively by means
of Newton’s method [54, section 18.1].

With the coefficients of the transformation (4.22) and its inverse, the rel-
ative permittivity and permeability distributions of the transformed grating
can be calculated with the transformation rules (2.32). The Jacobian matrix
of the transformation (4.23) reads

Λ =

∂xt(x, z) 0 ∂zt(x, z)
0 1 0
0 0 1

 =

a1 + 3a3x
3 0 (∂za1)x+ (∂za3)x3

0 1 0
0 0 1

 ,

(4.29)

thus the transformed relative magnetic permeability is

µ̃(x′, z) =
Λ1ΛT

|Λ|
=

µ̃xx 0 µ̃xz
0 µ̃yy 0
µ̃xz 0 µ̃yy

 , (4.30)
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with

µ̃yy =
(
3x2a3(z) + a1(z)

)−1
=
(

3
(
t−1(x′, z)

)2
a3(z) + a1(z)

)−1

, (4.31)

µ̃xz =
(
x3∂za3(z) + x∂za1z)

)
µ̃yy (4.32)

=
((
t−1(x′, z)

)3
∂za3(z) + t−1(x′, z)∂za1(z)

)
µ̃yy, (4.33)

µ̃xx =
(
1 + µ̃2

xz

)
/µ̃yy, (4.34)

and the transformed relative electric permittivity can be written as

ε̃(x′, z) =
ΛεΛT

|Λ|
= ε

Λ1ΛT

|Λ|
= ε(t−1(x′, z), z) µ̃(x′, z). (4.35)

An example follows.

4.2.1 Straightening of a linear contour

In this section, the cubic transformation (4.23) is applied to a grating as
defined in equation (4.19) with ε1 = 2, ε2 = 1, period p = 1µm, thickness
d = 1µm and the linear contour

f(z) = p/4− tan(1°) |z|. (4.36)

The transformation (4.20c) depends on the parameter xc. It is chosen as
xc = f(−d). With this choice f(z) ≤ p/4 = 0.25µm < fmax ≈ 0.387µm
in the domain −d ≤ z ≤ 0 and the transformation is invertible (equation
(4.28)). Furthermore, the choice xc = f(−d) ensures continuity at the in-
terface zmin = − d to free space in the sense of equation (4.21) because

then f(−d) = xc
(4.26)⇒ a3(−d) = 0

(4.24)⇒ a1(−d) = 1
(4.23)⇒ t(x,−d) = x. To

accomplish continuity at the other boundary, it is necessary to extend the
transformation beyond the original grating boundary, 0 < zmax, and trans-
fer t(x, z) to the identity at z = zmax. The choice zmax = d and the use of
f(z) = f(|z|) extend the transformation symmetrically beyond z = 0, such
that f(d) = xc ⇒ t(x, d) = x. The components of the permittivity and
permeability tensors calculated with the equations (4.30)-(4.35) are depicted
in the figures 4.5 and 4.6.

Since the transformation leaves the regions z < zmin, zmax < z un-
changed and is continuous everywhere else, the transmitted light in the region
zmax < z and the reflected light in the region z < zmin should be identical for
both gratings if they are irradiated by the same light. To check this, I solve
Maxwell’s equations numerically for both gratings as a one-dimensional grat-
ing problem (section 3.1), with outgoing wave boundary condition (section
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Figure 4.5: Scalar permittivity of the original grating with linear contour
f(z) = p/4−tan(1°) |z| and the components of the permittivity tensors of the
transformed grating, ε̃. Note that zmin = −d and zmax = d, where d = 1µm.
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Figure 4.6: The components of the relative permeability tensors of the
transformed grating, µ̃, with the original grating as shown in figure 4.5(a).
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3.3) by means of the differential method (section 3.2) in combination with
the S-matrix propagation algorithm explained in section 3.4.3. This implies
assuming periodicity in the x-direction.

On the left boundary, a perpendicularly incident plane wave with wave-
length λ = 0.633µm, amplitude 1V/m and linearly polarised in the y-direction
is chosen as boundary condition:

R(d) = 0, (4.37)

Txm(−d) = 0, ∀ m ∈ {−N, . . . , N} (4.38)

Tym(−d) =

{
1, if m = 0

0, else,
(4.39)

and kx,0 = 0.

For the differential method, I calculate the matrix M of the differential
equation (3.5) in the way described by Watanabe, Petit and Nevière in 2002
[30, equation 65] with the same modifications as in section 4.1. But this time
the Fourier coefficients of the material functions are calculated differently.
The material functions of the original grating are constant or rectangular
functions whose Fourier coefficients are analytically known, hence I use them.
Since, I do not know the analytical coefficients for the transformed grating,
I resort to numerical coefficients.

To solve the boundary value problem I use the S-matrix propagation al-
gorithm (3.39) (3.43) with 256 subdomains. On inhomogeneous subdomains
the transfer matrices are calculated with the basis mapping technique (3.20)
explained at the end of section 3.4.2. I numerically integrate the basis (3.21)
over these subdomains with the Runge-Kutta-Prince-Dormand(8,9) method
plus adaptive stepsize control using routines from the GNU scientific library
(GSL) [66, chapter 25, “ordinary differential equations”; in the more cur-
rent version 2.4 of this manual it is chapter 27]. Adaptive stepsize control
estimates the error done in every integration step and adapts the stepsize
according to a desired error threshold [54, section 81] [39, section 17.2]. I set
desired error threshold with the “gsl odeiv2 control standard new” routine
[66] using the absolute error εrel = 10−6, the relative error εabs = 10−6 and
the scaling factors ay = 1 = adydt. Additionally, I use the discrete Fourier
transformations routines of the GSL and its interface to the BLAS for several
linear algebra operations and the routines “zgetrf”, “zgetri” of LAPACK [67]
for matrix inversions. The 2N + 1 numerical coefficients for the material
functions are calculated by evaluating them on a equidistant grid of 16384
points over one period. The subsequent DFT yields vectors of size 16384
that are truncated to the size 2N + 1.
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With the solutions for both perpendicularly irradiated gratings, I calcu-
late the diffraction efficiencies with [37, equation 25] [34, equation 1.50]

DE(Tm) = TmT
∗
m

cos θn
cos θ0

θ0=0
=

here
TmT

∗
m Re (kz,m/k0) , (4.40)

for modes Tk transmitted with an angle θn into the vacuum region d = zmax ≤
z. These efficiencies correspond to the power fluxes of the diffraction orders
[34, section 1.2.3]. The zeroth and the first diffraction order are the only
propagative modes. The others are evanescent and carry no energy in the
z-direction [68, section 3.10.2].

The diffraction efficiencies for the original grating and the transformed
grating are shown in figure 4.7 for increasing truncation level N . For a quite
low truncation level of N = 10 the diffraction efficiencies converge to almost
the same values. A more sensitive measure for the difference between the
solutions in the isotropic zones is

∆S :=
∥∥∥S(zmin)− S̃(zmin)

∥∥∥
1

+
∥∥∥S(zmax)− S̃(zmax)

∥∥∥
1
, (4.41)

with S =

(
T
R

)
. This measure takes into account phase factors and evanes-

cent modes, in contrast to the diffraction efficiencies (4.40). The black dia-
monds in the plot 4.8 show this measure ∆S with increasing truncation level
N . The other curves show the same measure for other simulations. These
simulations differ from the previous ones only in the number of sampling
points used to numerically calculate the Fourier coefficients of the material
functions. Several observations can be made with these results. One is that
the agreement of the theory with the numerical results is not as good as
in section 4.1 where a very similar measure of difference is used and values
around 10−11 are achieved (4.16). This is magnitudes lower than the lowest
values of ∆S achieved here. The method used here has more numerical error
sources but a limited of “adjusting screws” that control its accuracy. The
truncation level N is not too low. This can be seen in figure 4.8 from the
plateau behaviour ∆S. Increasing the truncation level on the plateau does
not give a better agreement between the original and the transformed diffrac-
tion grating. The other observation is that the height and the beginning of
the ∆S-plateau depend on the number of sampling points.

Using numerical Fourier coefficients is not exact. To estimate the error
due to the use of numerical coefficients, I determine ∆S between two solu-
tions of the original grating. One of the solutions is calculated with analytical
coefficients. The other solution is calculated with numerical coefficients ob-
tained from 8192 sampling points. Then, with a truncation level of N = 66,
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Figure 4.7: Transmitted diffraction efficiencies of the original grating with
linear contour f(z) = p/4− tan(1°) |z| and the diffraction efficiencies of the
transformed grating with respect to the truncation level N .

the measure of difference is ∆S ≈ 9.4 10−6 ≈ 10−5. This is still lower than
the lowest value for ∆S ≈ 10−4 in figure 4.8.

There are other error sources. The Newton method used in the inverse
transformation is one of them. This method is an iteration that stops when
the residual t(x) − x′ < TOL =: 10−15. With such a low TOLerance the
contribution of the numerical inversion to the overall error should be negli-
gible. The 256 subdomains used in the S-matrix algorithm should be more
than enough to avoid ill-conditioned matrix inversions due to the stiffness of
the ODE. The transfer matrices of the subdomains are calculated by means
of a numerical integration. The error in this numerical integration should
be bounded by the use of the adaptive stepsize routine. But what it really
controls is only an estimate of the error in each step using a predefined error
threshold. And the error threshold in each step is determined by the pa-
rameters I feed the routine with. These parameters, the number of sampling
points for the Fourier coefficients, the number of subdomains used in the S-
matrix algorithm and the tolerance of the Newton method are the “adjusting
screws” that influence the accuracy of the numerical method used. Adjusting
these one could further improve the agreement of the diffraction efficiencies
(4.40) or lower the measure ∆S (4.41).

But changing the physical properties of the problem is more interesting.
The original grating is isotropic and binary in the sense of equation (4.19) in
contrast to the transformed grating which is anisotropic and not binary. But
the permittivity and permeability distributions of the transformed grating do
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Figure 4.8: The measure ∆S/(V/m) (4.41) with respect to the truncation
level and for different number of sampling points in the numerical calculation
of Fourier coefficients of the material functions.

not deviate that much from those of the original grating as can be seen in the
figures 4.5, 4.6. The reason is that the transformation distorts the grating
domain only slightly. This is due to the low variations of the contour f(z)
and the choice xc = f(−d). The practically equivalent diffraction behaviour
between both gratings would be more meaningful if the transform distorted
the grating domain more extremely. Such more distorting transformations
are studied in the next two sections. In both of them, this is accomplished
with contours f(z) that are highly varying as compared to (4.42). Apart from
that, these following sections are conceptually and methodologically similar
to this section.

4.2.2 Straightening of a linear contour of higher vari-
ation

Let the contour function f(z) be defined as

f(z) = p/4− tan(10°) |z|, (4.42)

and the transformation that straightens this contour is determined by the
choices xc = f(−d), zmin = −d and zmax = d. These choices ensure continu-
ity of the transformation (4.23) at the boundaries zmin, zmax. An explanation
is given in section 4.2.1. The period p = 1µm and the thickness d = 1µm.
With these choices, f(z) ≤ p/4 = 0.25µm < fmax ≈ 0.26µm in the domain
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zmin ≤ z ≤ zmin and hence the transformation (4.23) is invertible (equa-
tion (4.28)). The components of the permittivity and permeability tensors
calculated with the equations (4.30)-(4.35) are depicted in the figures 4.9 and
4.10.

This time, the transformed grating barely resembles the original grating.
In particular, the component ε̃yy shown in 4.9(c) features a very high peak in
the center rendering the original contour almost invisible with the linear scale
used. One can still recognise the contour in the other plots 4.9(b), 4.9(d),
though.

In order to check whether both gratings diffract light equivalently, I apply
the same procedure as used in section 4.2.1: Maxwell’s equations are solved
with the same boundary conditions 4.37 by means of the differential method
in combination with the S-matrix algorithm.

Some computational details are different, though. These details are given
in this paragraph. For the transformed grating, the number of sampling
points used to numerically calculate the Fourier coefficients of the material
functions is 8192. The number of subdomains in the S-matrix algorithm is
512 and the transfer matrices of these subdomains are calculated in exactly
the same way as done in section 4.2.1. What follows concerns the original
grating. For the original grating, the staircase approximation [69] is used.
This means that the grating is treated as a stack of homogeneous layers. I
use 512 of these layers as the subdomains in the S-matrix algorithm. And
in each subdomain [zk, zk+1] I calculate the transfer matrix in one step by
means of the diagonalisation technique [40, section 1.3]:

Ťk = Q−1V −1
k exp(iDk(zk − zk+1))VkQ, (4.43)

where Q is the conversion matrix (A.21). The diagonal matrix Dk consists
of the eigenvalues of Mk := M ((zk + zk+1)/2), where M(z) is the matrix
of the ODE (3.5). And the matrix V contains the eigenvectors of M such
that Mk = V −1

k Dk Vk. I use the LAPACK routine “zgeev” [67] for the
diagonalisations. This approximation and the fact that no adaptive stepsize
control is used here make this technique error-prone. But not with so many
layers. The advantage is the predictable execution time.

With the solutions for both perpendicularly irradiated gratings, I cal-
culate the diffraction efficiencies with equation (4.40) and the measure ∆S
with equation (4.41). The diffraction efficiencies for the original grating and
the transformed grating are shown in figure 4.11 while the measure ∆S is
depicted in figure 4.12. In contrast to the simulations in the previous section
4.2.1, a truncation level of N = 10 is not enough to achieve a reasonable
convergence of the diffraction efficiencies. But they do converge to almost
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Figure 4.9: Scalar permittivity of the original grating with linear contour
f(z) = p/4 − tan(10°) |z| and the components of the permittivity tensors
of the transformed grating, ε̃. Note that zmin = −d and zmax = d, where
d = 1µm.
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Figure 4.10: The components of the relative permeability tensors of the
transformed grating, µ̃, with the original grating as shown in figure 4.9(a).
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Figure 4.11: Transmitted diffraction efficiencies of the original grating with
linear contour f(z) = p/4− tan(10°) |z| and the diffraction efficiencies of the
transformed grating with respect to the truncation level N .

the same values at N = 60. The more sensitive measure difference ∆S (figure
4.12) reveals that a truncation level of around 200 is necessary to reach the
plateau. The height of this plateau is around 10−4 which is comparable to
those obtained in the previous section 4.2.1.

4.2.3 Straightening of a sine contour

The concept evolved in section 4.2 is not restricted to linear contour functions.
It is restricted to continuous contours that obey equation (4.28). Let the
contour function f(z) be defined as

f(z) = p/4 + A sin(kfz), (4.44)

where A = 0.5µm and kf = 2π/µm, the period p = 10µm and the thick-
ness d = 1µm. The transformation that straightens this contour is de-
termined by the choices xc = f(−d), zmin = −d and zmax = 0. Since
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Figure 4.12: The measure ∆S/(V/m) (4.41) with respect to the truncation
level for the highly varying linear contour as original grating.

f(−d) = f(0), it is not necessary to extend the transformation beyond
the original grating domain to render it continuous. Furthermore, the trans-
formation (4.23) that straightens this contour is invertible (equation (4.28))
because f(z) ≤ p/4 + A = 3µm < fmax ≈ 3.97µm.

The components of the permittivity and permeability tensors calculated
with the equations (4.30)-(4.35) are depicted in the figures 4.13, 4.14. Like
the contour of the previous section (4.42) this sine contour (4.44) varies much.
The component µ̃xx and the off-diagonal components µ̃xz of the transformed
permeability tensor feature high peaks at the turning points of the contour
function f(z). These peaks are by no means as sharp as the peaks in fig-
ure 4.10(b) caused by the highly varying linear contour. But for increasing
amplitude A these peaks become higher and higher.

Since the period is ten times bigger than in the previous sections 4.2.1,
4.2.2, there are more propagative modes in the isotropic homogeneous zones
and hence more diffraction efficiencies available to compare. Several diffrac-
tion efficiencies of transmitted modes in 0 ≤ z as well as the efficiencies of
reflected modes in z ≤ 0 are plotted in figure 4.15, with respect to the trun-
cation level. All of them converge to almost the same values at a truncation
level N = 50. These results confirm the claim in the beginning of this sec-
tion: The concept is not restricted to linear contours. Apart from that, I
gained no additional insight here.

To obtain these results I apply the same procedure in section 4.2.1:
Maxwell’s equations are solved with the same boundary conditions 4.37 by
means of the differential method in combination with the S-matrix algo-
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Figure 4.13: Scalar permittivity of the original grating with sine contour
f(z) = p/4+A sin(kfz) and the components of the permittivity tensor of the
transformed grating, ε̃.
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Figure 4.14: The components of the relative permeability tensors of the
transformed grating, µ̃, with the original grating as shown in figure 4.13(a).
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Figure 4.15: Several diffraction efficiencies of the original grating with con-
tour f(z) = p/4 + A sin(kfz) and diffraction efficiencies of the transformed
grating with respect to the truncation level N .
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rithm. The computational details that deviate from the previous section are
the following. For the original grating, the number of subdomains in the S-
matrix algorithm is 512 and the transfer matrices are obtained by numerical
integration, in the same way as in section 4.2.1. The transformed grating
is approximated with 1024 homogeneous layers and the transfer matrix for
each layer is calculated with the diagonalisation technique explained in sec-
tion 4.2.2.
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Chapter 5

Summary

This work gives an introduction to the field of transformation optics in the
section “transformation optics” and a derivation of the transformation rules.
These transformation rules are used to obtain the permittivity and perme-
ability tensors of transformed gratings in the section “transformed gratings”.

The study of these transformed gratings makes use of the methods in
the section “methods for the grating problem”. There, I try to shed light
on two fundamental issues of the differential method and related methods:
memory and stiffness. I further provide explanations how and why the two
algorithms presented in this section solve the stiffness problem. The multiple
shooting method has parallelisation potential and there are numerous ways
to solve the root finding problem arising in the multiple shooting method. I
suppose that this freedom could be used to alleviate the memory problem.
The S-matrix algorithm is recursive and recursions cannot be parallelised.

The results of the “transformed gratings” section allow for the following
conclusion: Given any grating, there is an infinite number of other gratings
that exhibit the very same diffraction behaviour. The design of such equiva-
lent gratings mainly consists of finding continuous invertible transformations,
of which there are infinitely many.

A transformation of the axial direction is the simplest way to accomplish
this. The axial linear transformation applied to a diffractive optical element
in section 4.1 is just one of them. If the lateral direction shall be trans-
formed, some difficulties arise. These difficulties and how to counter them
are treated in section 4.1. There, gratings defined by a contour are trans-
formed in a way that maps the contour to a constant. The equivalence of the
transformed gratings with the original one is studied with the numerical so-
lution of Maxwell’s equations. If numerical errors are ignored, the numerical
results confirm equivalent diffraction behaviour in all the cases studied.
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Appendix A

The conversion matrix

In this section, the matrix Q that converts between the field vector F and the

propagation vector S =

(
T
R

)
is derived for homogeneous isotropic material:

F :=


[Ex]
[Ey]
[Hx]
[Hy]

 =

(
1 1
Q21 Q22

)
S := Q

(
T
R

)
:= Q


[Tx]
[Ty]
[Rx]
[Ry]

 . (A.1)

The propagation vector consists of the amplitudes of plane waves in the
Rayleigh expansion of the electrical field. The first row of Q consists of unit
matrices by definition. What remains is a conversion matrix C that converts
S to the Fourier modes of [Hx] and [Hy]. This conversion can also be found
elsewhere [51] [32, section 7.3] [23, section 3.3.2.5]. In the truncated Fourier
expansion with respect to x of the electrical field (3.2)(

Ex(x, z)
Ey(x, z)

)
=

N∑
m=−N

(
Exm(z)
Exm(z)

)
eikx,mx, kx,m = kx,0 +m

2π

d
, (A.2)

the information about the propagation in the z-direction is in the

(
Exm(z)
Exm(z)

)
part. And in a homogeneous isotropic region, this part can be expanded as
well [34, section 1.2.3](
Ex(x, z)
Ey(x, z)

)
=

N∑
m=−N

((
Txm(z0)
Tym(z0)

)
eikz,m(z−z0) +

(
Rxm(z0)
Rym(z0)

)
e−ikz,m(z−z0)

)
eikx,mx,

(A.3)

kx,m = kx,0 +m
2π

d
, kz,m =

√
ω2εµ− k2

x,m, (A.4)
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with the permittivity ε and the permeability µ in this region and the wave
number kz,m that follows from

k2
x + k2

z = k2 =

(
2π

λ

)2

n = ω2εµ, (A.5)

where kx is the x-component of the wave vector k and kz is its z-component.
The y-component of the wave vector is zero because the waves travel in a
direction perpendicular to the y-axis by definition. The number n is the
refractive index of the material in the homogeneous region. In the plane-
wave expansion (3.3), sometimes called Rayleigh expansion, the waves are
split into R (reflection) and T (transmission) according to their direction of
propagation.

So, comparing the two equations (A.2) and (3.3) gives(
Exm(z)
Eym(z)

)
=

((
Txm(z0)
Tym(z0)

)
eikz,m(z−z0) +

(
Rxm(z0)
Rym(z0)

)
e−ikz,m(z−z0)

)
, (A.6)

and the choice z0 = z yields(
Exm(z)
Eym(z)

)
=

((
Txm(z)
Tym(z)

)
+

(
Rxm(z)
Rym(z)

))
, (A.7)

that is, the trivial conversion between the components of the propagation
vector S and the modes of the electrical field [Ex] , [Ey]. What remains is to
get a similar expression for the modes of the magnetic field. The rotational
Maxwell equations in Cartesian coordinates read

rotE = iωµH, rotH = −iωεE. (A.8)

The considered problem is invariant in the y-direction, hence ∂yE = 0 = ∂yH
and some entries in the equations (A.8) are zero

iωµH =

 − ∂zEy
∂zEx − ∂xEz
∂xEy

 , (A.9)

−iωεE =

 − ∂zHy

∂zHx − ∂xHz

∂xHy

 . (A.10)

Let us consider the first component of equation (A.9). Here, we can expand
the fields on both sides of the equation as in (A.2) which gives

iωµHxm = −∂zEym. (A.11)
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On the right side of this equation we can insert (A.6) and apply the derivative

iωµHxm(z) = −∂z
(
Tym(z0)eikz,m(z−z0) +Ryme

−ikz,m(z−z0)
)
, (A.12)

=
(
−ikz,mTymeikz,m(z−z0) + ikz,mRyme

−ikz,m(z−z0)
)
, (A.13)

and rearrange them slightly

Hxm(z) =
kz,m
ωµ

(
−Tymeikz,m(z−z0) +Ryme

−ikz,m(z−z0)
)
, (A.14)

and choose z = z0

Hxm(z) =
kz,m
ωµ

(−Tym(z) +Rym(z)) . (A.15)

So, the conversion for one magnetic field component is done. The second
follows at once. Let us have a look at the second component of equation
(A.9)

iωµHy = ∂zEx − ∂xEz, (A.16)

and eliminate Ez using the third component of equation (A.10)

iωµHy = ∂zEx − ∂xEz = ∂zEx +
1

iωε
∂2
xHy, (A.17)

and insert the truncated Fourier expansions and apply the derivatives

iωµ
N∑

m=−N

Hym(z)eikx,mx =
N∑

m=−N

(
∂zExm(z) +

1

iωε
∂2
xHym(z)

)
eikx,mx

=
N∑

m=−N

(
∂zExm(z) +

ik2
x,m

ωε
Hym(z)

)
eikx,mx

=
N∑

m=−N

(
∂z
(
Txm(z)eikz,m(z−z0) −Rxm(z)e−ikz,m(z−z0)

)
+
ik2
x,m

ωε
Hym(z)

)
eikx,mx

=
N∑

m=−N

(
ikz,mTxm(z)eikz,m(z−z0) − ikz,mRxm(z)e−ikz,m(z−z0) +

ik2
x,m

ωε
Hym(z)

)
eikx,mx,

(A.18)

hence(
iωµ−

ik2
x,m

ωε

)
Hym(z) = ikz,m

(
Txm(z)eikz,m(z−z0) −Rxm(z)e−ikz,m(z−z0)

)
,

(A.19)

62



and with the choice z = z0

Hym(z) =
kz,m

ωµ− k2x,m
ωε

(Txm(z)−Rxm(z)) =
ωε

kz,m
(Txm(z)−Rxm(z)) . (A.20)

This equation, put together with (A.15) and (A.7) is the complete conversion
and reads
Exm
Eym
Hxm

Hym

 =


Txm
Tym

−kz,m
ωµ

Txm
kz,m
ωµ

Tym

+


Rxm

Rym
ωε
kz,m

Rxm

− ωε
kz,m

Rym

 =


1 0 1 0
0 1 0 1

0 −kz,m
ωµ

0 kz,m
ωµ

ωε
kz,m

0 − ωε
kz,m

0



Txm
Tym
Rxm

Rym

 ,

(A.21)

omitting the z-dependence. One may also write it in terms of block matrices,
that is, writing kz for the diagonal matrix with the numbers kz,m on the
diagonal:

C =

(
0 − kz

ωµ
ωε
kz

0

)
. (A.22)

With this notation, equation (A.21) becomes

F =


[Ex]
[Ey]
[Hx]
[Hy]

 =


1 0 1 0
0 1 0 1
0 − kz

ωµ
0 kz

ωµ
ωε
kz

0 −ωε
kz

0




[Tx]
[Ty]
[Rx]
[Ry]

 =

(
1 1
C −C

)(
T
R

)
=: QS.

(A.23)

So, the propagation vector S can be translated into the corresponding field
vector by a simple matrix multiplication with Q. If Q is invertible, the way
back, from field vector to propagation vector,

S = Q−1F, (A.24)

works too. But is Q invertible? If its determinant is non-zero, it is invert-
ible. So, let us have a look at the determinant. According to [70, 71] the
determinant of a 2x2-block matrix

det

(
Q11 Q12

Q21 Q22

)
= det (Q11Q22 −Q12Q21) , (A.25)
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if Q21Q22 = Q22Q21. So, the determinant of the conversion matrix

det(Q) = det

(
2

(
0 − kz

ωµ
ωε
kz

0

))
= 22(2N+1) det

(
0 − kz

ωµ
ωε
kz

0

)
(A.26)

= −22(2N+1)

(
ΠN
m=−N

ωε

kz,m

)(
ΠN
m=−N

−kz,m
ωµ

)
6= 0, (A.27)

if kz,m 6= 0 ∀ m ∈ {−N, −N + 1, · · · , N}. An unfortunate choice of d or
λ can lead to kz,m = 0 for some m. But in this case, the conversion matrix
itself is not defined because it contains 1/kz,m-entries.
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